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Abstract: The channel discharge function in the generalized
lightning travelling current source return stroke model (GTCYS)
inacomplex andtimedomainisanalyzed. Heidler' sform of the
channel-base current function is accepted. The expression of the
initial channel charge distribution function is proposed. First,
using this form of the charge distribution function it is shown
that the previously established return stroke models, the Bruce-
Golde (BG), the Traveling Current Source - (TCS), the
Diendorfer-Uman (DU) and the Thottappillil-Uman (TU) models
can be derived as the special cases of the GTCS. Second, if the
general caseistreated , i.e., the values of the parametersin the
initial channel charge distribution function are arbitrary
(independent of the channel-base current parameters), certain
limits of their values can be deduced regarding the genera
propertiesof thechannel dischargefunctionintheGTCS. Third,
for thiscasethe simple analytical forms of the channel discharge
function in the time domain for a few microseconds of the
discharge (discharge risetime) at the observed channel atitude
arederived. Sincetherisetime of the channel discharge function
definesthe magnitude and therisetime of theradiated lightning
electromagnetic pulse (LEMP) it turns out that the measuring
of the LEMP at various distances can provide the values of the
function parameters. This will be the “key” for the further
examination of the gaseous-dynamic processes in the channel
during the return stroke phase.

1. Introduction

Based on the shortcomings of the existing traveling
current sourcereturn strokemodels (theBG [1], the TCS[ 2], the
DU [3] and the TU [4] model), the new GTCS return stroke
model has been developed [5, 6]. It eliminates completely all
disadvantages of the mentioned models concerning the current
discontinuities and the discontinuities of the current derivative
at the place of thereturn stroke wave-front [6]. Asaresult of the
suitable adopted channel charge distribution function the
dynamics of the internal channel processes can be partialy
examined during the return stroke. Moreover, using atwo-layer
cylindrical model of the channel it is possible to derive the
simpl e connection between the channe time-discharge constant
and the channel discharge function. [6]. On the other hand, it
represents the generalization of the traveling current source
model staking into account that the BG, the TCS, the DU and the
TU models can be easily carried out from the new model as its
specia cases.

Inthe GTCS model the assumption of the existence of
the traveling current source is adapted from the TCS model.
Although the current reflection from the bottom of the channel
can betaken into account we shall neglect it dueto thesimplicity
of the mathematical derivations. The channel-base current at the
striking point i (#) and theinitial charge distribution along the
channel g,(z) re considered as known. Hence, the channel
charge at some dtitude z, at someinstant of time ¢, is

q'z0)= qo(z)f(z t-zIv) , t2zlv, D

where f representsthe channel dischargefunction. The channel
discharge function is given by

ft-zv) = 1+ f (2, E) dE )

Function £, can be obtained using Fourier's inversion formula
(denoted B’ F )|

@) = 3fzu)du=F - [Fl(z,s)] ,

F (z,5)=1,(s)/Qy(z,5V")

where s=jo, u=t-z/v, (u>0), [, =F (i) and Q0 =7(q, )
are the Fourier transforms of the chahnel-base current and the

initial channel charge distribution, respectively. Since thereis
no loss of charge through other processes (for example ar
discharges) these two functions are connected by the charge
conservation law

[Fiod- ["a@d (@

where, for the sake of the simplicity of the theoretica
considerations, it is supposed that the length of the channel is
infinite. In accordance with this assumption the duration of the
return stroke is assessed to be also infinite.

The current at some dtitude is given by [5, 6]:

h(z8) 1.\ © CEfyt ez
i(z,0) = f 0@ 5 S eV Ok, ()

where v ™= vc/(v+c) is the so-called reduced return stroke
velocity and h,_=v*(t+z/c). In the above expressions it is
assumed that théupward return strokevelocity (v) aswell asthe
downward discharge current speed (¢) are constant. If they are
the functions of atitude their average values should be used as
it isdonein the modified Diendorfer-Uman model (MDU) [7].
According to the assumed mechanism of the channel
dischargeit is possible to deduce four properties of the channel
discharge function. Taking into account that the charge in the
channel at altitude z starts to discharge at the instant of time

t=z/v it follows from Eq.(1)
u=t-z/v. (6)

feu=0)=1,

Similarly, after the discharging process there should be no net
charge along the channdl. Therefore one obtains

Sz u==)=0 . (7)

The third and the fourth features of the channel discharge
function follow from the assumption that the laterally deposited
charge along the corona sheath below the return stroke wave-
front diminishes monotony to the zero

fz,u20)20 , (8)

fzu)/du|, , < 0. 9)

Basically, the measurements of the remote LEMP are
based on the measurements of magnetic and electric field
derivative (the LEMP is obtained by the integration of the raw
data). Since the measured values of the field derivative contain
no discontinuities it turns out that the derivative of the channel
dischargefunction at thetime onset (« = 0) must be zero, Eq.(9).
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2. The channel-base current and theinitial
channel charge distribution function

We have accepted the following form of the current
function at the striking point [2, 9]

(0= 0, /) 1)

» n (10)
@)=k /(A +k; )] exp(-t/t,) , k=t/T, .
The values of the parameters in Eq.(10) can be
determined using the measurements [8] and the graphical
method [9]. As it isdiscussed in [9] and [10] this form of the
current function is very convenient for lightning calculations.
For the initia charge distribution function the
following form is assumed

d d?
9@ =- 0, g(z>+xd1(z>7§+xd2(z);§+

2(z) = [z'”/(z’”+l.'1n)] exp(-z/4,) ,
where Qoll, Al, AZ, m are the channel charge distribution
parameters. The minus sign in Eq.(11) correspgnds to the
negative charged lightning channel (hence Qy,>0). The
examinaionsof theparametersin Eq.(11) haveshownthat A, A,
and m determine the time-dependence of the channel discharge
function. The parameters A, (2), A 4,(2), ... define the height-
dependence of the channel dlscharge%uncti on. Thisform of the
function is chosen because of two reasons: firgt, it enables (for
special parameter values) the same results as previously
established models (the BG, the TCS, the DU and the TU
models). Second, theinfluence of the parameterson thetimeand
the space behaviour of the channel discharge function is fully
arated. Moreover the parameters A, (z), A 4,(2), ... do not
change the total amount of charge aong the channel, they
change only the shape of thedistribution function. Third, asitis
shown in previous investigations [5, 6] this form of function is
very flexible enabling the simulation of the uniform as well as
the strongly nonuniform initial charge distribution.
The connection between the channel -base current and
the charge distribution along lightning channel, i.e. between I,
and Q,, can be obtained from the charge conservation law,
Eq.(4). Therefore we obtain

0 =(10/n)( [ “’l(t)dt) /( [ ”g(z)dz) . @

3. Analysis of the channel discharge
function in the complex domain

(11)

Theexact expression of thechannel dischargefunction
in the complex domain is necessary for the further analysis
during rise- and falltime. Applying the Fourier transformto the
expression of the channel-base current, Eq.(10) and on the
expression of theinitial channel chargedistribution, Eq.(11) one
obtains

1) =F [,,®] = d,/M) L) ,

<. . 13
Qé(s):.?[qo’(z)]:—Q&G(s)[n;uis'] , 13

where L(s)=F [I(H] and G(s)=F [g(z)]. Usng EQq.(3)
follows the expression for F, in the complex domain

L(s)

Fy(s)=- b

/ = - 14
QM Gy [1+ Y AL (v ¥ (14
i=1
Eq.(14) represents the genera case of the channel
dischargefunctioninthe GTCSinthe complex domain. It means
that the values of the parameters in Egs (10) and (11) are
arbitrary and in the general case they should be n#m,
AEvit, A *v*/rz, A4#0, i=1,2,... wheress the values of
the parameter's Q,;, and fo are connected by Eq.(12).
4. The behaviour of the channd discharge function
in the time domain during risetime

We shall derive the approximative expressions of the
channel discharge function in the time domain during the
risetime (afew microseconds of the channel section discharge).
The general case of the GTCS will be treated. These formulae

can be used for further calculation of the lightning current along
the channel using Eq.(5) aswell as for further calculation of the
radiated LEMP magnitude.

4.1 The behaviour of the channel discharge function for
Adi:O, i=1,2,...

Suppose that all the channel discharge constants
defining the height-dependence of the channel discharge
function are equal to zero, i.e., Adi= 0,i=1,2,... Theanaytical
expressionsof thechannel dischargefunctioninthetimedomain
for therisetime (u~ 0) can bederived if thevaluesof Fourier's
transforms in Eq.(13) are calculated in the high frequency
domain s~ e . From Eqgs(10) and (11) it turnsout that theterms
I(t) and g(z) take the values

o) = t"/7], t+0; g(z) = z"/AT, z~0. (15)

Using the Fourier transform of the power function we have
Fe" = n-Dl/s" . (16)

Applying it on Eq.(15) and replacing into Eqs (13) and (14)
one obtains

! T

Fl(s—> oo)s —An_ 1 !

ml gnm T

(17)

where A=1 /(Qynv*)# land T} =A /v*. Returning into
time domain by use of the inverse Fourier transform it follows
*m

1:1 un—m—l

|
fu-0)~-AZ L ®
il ) m! 4 (n-m-1)!

(18)

If one compares Eq.(18) with the feature of the
channel dischargefunction £,(x=0) = 0, Eq.(9) it followsthat the
values of the exponentsin éqs (20) and (11) should satisfy the
inequality n>m+1. It is obvious that the current steepness (»)
and charge distribution parameter (m) define the dynamics of
the channel discharge during the risetime.

The substitution of Eq.(18) into Eq.(2) yields

' *m n nom
fu-0)=1-AZ (¢I"1ahH L — | (19)
m! (n-m)!
Thereisno height-dependence of thechannel dischargefunction
in this case. Therefore, this type of discharge function is
convenient for the examination of the discharge processesin the
small sections of the channel, maybe some tens of meters.

4.2 The behaviour of the channel discharge function for
Ag#0and A,,=0,i=2,3,..

Supposethat only thefirst channel discharge constant
defining the height-dependence of the channel discharge
function isnot equal to zeroi.e., A, (z)# 0. Applying similar a
procedure as in the previous case one obtains

*m
1 31

!
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where 1§, (z) = A, (2)/v*. Using the inverse Fourier transform
it follows

(20)

*m _
‘El un m

f(u~0)= - A

(21)

n!
_l n_x -m)!
ml 7} (2) (n-m)!

Thecondition f,(x=0) =0, givenby Eq.(9) is satisfied
if n>m.Using Eq.(2) one obtains

1:1 un—m+1

!
f(zu-0)=1-A%L .
m! T'I' r:l(z) (n-m+1)!

(22)

It is reasonable to expect that the value of the
parameter t4,(z) increases with the channel height. This is
shown in the DU model [3] where two values are used: the
breakdown time discharge constant t,4=0.6 s for the lower
parts of the channel and the corona time discharge constant
r;c =5ps for the upper parts of the channel. The similar result
is Obtained in the case of the TU model [4]. In this case the
continuousfunctionfor thetimedischarge constant was obtained
starting with the value 0.6 ps at the channel-base (z=0) and
increasing rapidly with the channel height.



4.3 The behaviour of the channe discharge function for
A-d1¢0, Au# 0, Adi=0, i=3,4,...

Let us examine the case when A,,#0 and A ;,#0.
Eq.(14) takesthe form

*xm
n! 1 L3

Fl(Z,S*W)E _A m! n-m+2 n_ %2
© S Ty T42(2)

; (23)

*

where t4,(2)=A,,(z)/v and the term containing A,, is
neglectedd éecause s—eo . Returning into the time domain using
the inverse Fourier transform it follows

] T*m n-m+1
Alzu=0)= - AT —— o . (28
m! ,E'l‘ '5:;2 @) (n-m+1)!

The condition f,(z=0)=0 is satisfied if n>m-1. The channel
discharge function is given by
*m
)T

flzu-0)=1-A 2 _1 “ .
m! ) 1222(2) (n-m+2)!
It is interesting to notice that the channel discharge function is
not affected by parameter A, athough itsvalueis not zero.

n-m+2

(25)

4.4 The behaviour of the channel discharge function for
)»djaeo, Ag;=0,1>)

Inthe similar manner one can derive the expression of
the channel discharge function in the general caseA ;70 if
A4;=0,i>j. FromEgs (13) and (14) one obtains

*m

n 1 L3

m! s"_m+j ":;‘ T;]J(Z)
where r;j(z) =A,:(2)/v" theinfluence of all terms containing

Ay 1<) can bé'neglected because s-e . Using the inverse
Fourier transform it follows

F (zs~o)= - A (26)

n! T;m un—m+j—1
fizu~0)= ~AZ= —— — - (@7
m! ,E'l‘ r:jj(z) (n-m+j-1)!
Thecondition f,(u=0) =0, issatisfied for n> m-j+1.
Substituting Eq.(27) into Eq.(2) yields

* m
L u

1 n-m+j
fzu-0)=1-A = T — .
ml o) (mmei

(28)

5. The behaviour of the channel discharge function
during falltime for the general case of the GTCS

The behaviour of the channel discharge function
during faltime can be obtained from the calculation in the
complex domain for s~0. Substituting this condition into
Eq.(14) the approximative expression describing the behaviour
of the “tail” of the channel discharge function can be derived

Fi(s) = - [1, L&V [Qqn GG, s20. (29
From Eq.(13) one obtains
G = [

Zm

m
Al +z™

sf“’ z exp(—z/)‘2)dz=fmg(z)dz,s—>0.
0 0

m
Ap+z™

exp(-z/A,) exp(-sz) dz
(30)

tn

L(s) = fo“’ exp(~t/t,) exp(~st) dt

ﬁfm t
0 n
Ty +t”

Substituting Egs (30) and (31) into Eq.(29), using Eq.(12) we
have

n n
Ti+t

exp(~t/t,) dt = f“' IHdt, s-0.
0

(31)

n

I fo ~ I(¢) dt

0

Fi20)=-—— ——
QoM fmg(z)dz
0

--1, (32)

In accordance with Eq.(3), applying the inverse Fourier
transform in Eq.(32) yields

K =2 F©}=-8a@), u-e, (33)

where 6 (u) denotes the Dirac deltafunction. Finally, applying
Eq.(2) in Eq.(33) yields

f(u)=1+f0’f1(€)d€=l-h(u)=0, u-o ,  (34)

where h(u) is the Heaviside unit-step function. Thus it can be
concluded that the function of the initial charge distribution
satisfiesthe featuresgiven by Eqs(7), (8) and (9). Itsbehaviour
is not affected by parameters A, i=1,2,...athough their
valuesin the general case are not zero.

6. Conclusion

The behaviour of the channel discharge function
introduced by the GTCS return stroke model in the complex and
time domain areanalyzed. Taking into account the constrictions
of the GTCS model, the inequalities which have to be satisfied
between the parameters of the channel-base current and the
initial channel charge distribution function are derived. The
approximative expressions of the channel dischargefunction in
the general case of the GTCS during risetime are also derived.
They can be used for the calculation of the lightning current
along the channel in a few microseconds of the discharge, the
period of time during the magnitude of the LEMP aswell as the
magnitude of itsfirst derivative is generated. The specia cases
of the GTCS model (the Bruce-Golde, the Traveling Current
Source, the Diendorfer-Uman, the Thottappillil-Uman and the
modified Diendorfer-Uman model) areal so considered regarding
the calculation of the channel discharge function and the
lightning current along the channel. Although the current
reflection from the bottom of the channel can be taken into
account we have neglected it due to the simplicity of the
mathematical derivations. The results obtained in the paper will
provide an easy calculation of the channel discharge function
based on the LEMP and the channel-base current
measurements. Thereforethey will enable better examination of
the dynamics of the internal gaseous-physical processes in the
lightning channel during the return stroke.

7. Appendices: The analytical form of different current
distributions along the channel usingthe GTCS

7.1 The TCS model
Substituting A;,=0, i=1,2,.., n=m, A =T v",
A,=7,v" into Egs (10) and (11) from Eq.(12) one obtains
O5i=L,/(v") . (35)
From Eqgs (13) and (14) we get

F,(6)= - [L/ (@I [LE)/GslvH]=-1 . (36)
where G(s/v™*)=v " L(s). Applying Eqs(3) and (2) wearriveat
K@y =7 F @} =-8w), (37)

flu)=1-h(u) , u=t-z/v. (38)

In further derivations we use the sampling feature of the Dirac
function

[ 86,-8) B dE = 7it,) - (39)
Using Egs (5) and (11) the current along the channel will be
iGet) = ["q5(€) (8101) fla-Emv " +2le)
= (@/m) [ g (&) b(e-Eale) o’ (40)
gE)=[E' "I(T}+E' M exp(-E//1,) , E/=E/v" .



Using Eq (39) it follows
iz =(1,/n) glt+ziv™)
L (@t+zey ( t+zle

Yo (41)
N <]+ (+zlc)y

] =iy(t+zlc)

2

where i, is the channel-base current given by Eq.(10). This
expron represents the lightning current along the channel
according to the TCS model [2]. At the dtitude of the return
strokewavefront (¢ = z/v) the current and its derivative have the
values which are not equal to zero

i(z,t=z/v) # 0, di(z,t)/dt| # 0. 42

Therefore these discontinuities cause similar discontinuitiesin
the calculated LEMP as well as in field derivative (in the
radiation or far field component) [see ref.6]

The BG model will not be separately derived because
it can be treated as the special case of the TCS model if ¢- e
Hence from Eq.(41) it follows i(z,£) = i, ().

t=zlv

7.2 The DU mode

Substituting A ;,=v"t,A,,=0, i=2,3,...(there are
two constants in the DU model, the breakdown T 1pg ANd the
corona t, tlmedlschargeconstant [3]; infurther cfélrlvatlons
we shall® 'élenote any of these congtants as t n=m,

A=t v A=T,v |nt0Eqs(10)and(11)fromEq (12) one

oBtaind the equal result asin the case of the TCS model
On=l,/(Mv™) . (43)
From Egs (13) and (14) we get
F(s)=-1/Q+71;s) . (44)
Using asimilar procedure as in the previous case we obtain
Ky =F @)= -A/rpep(-uizy),  (45)

The current along the channel will be
i) = ["000) 2 fie-Eh* s sle)
Y R P RN -0 PO B
nt, e’ T,
g )=[£’”/(f'1'+5’")]exp(—E’/r2) , El=Em”
By partial integration of the second term in Eq.(46) we have
i) = (1,/n) gE') exp(t-E'+2le)/t, | v
_ 5{ (t+zlcy"

N | <]+ (@+zle)

IO t+zlc

exp[-(t+z/c)/T,] -

(47)
_ fzlv)y

T+ E/vY

= iy(t+z/c) - iyz/v™) exp[-(t-z/v)/7,] .
Eq.(47) provides the expression of the lightning
current along the channel according to the DU model [3]. At the
dtitude of the return stroke wavefront the current has no

discontinuities but there is a discontinuity of the current
derivative

i(zt=zlv) =
7.3 The TU mode

exp[-(z/v™*)/z,] exp[-(t-z/v)/T,] }

0, din/di ,_, =0 . (48)

In the TU model [4] there is only one height-
dependent time discharge constant t,(z). Its value can be
calculated from the simultaneous meastirement of the channel-
base current and the radiated LEMP. The procedure for finding
thechannel dischargefunctionissimilar asin the case of the DU
model. Thus one should accept the following values of the
parametersin Eqs(lO)and(ll) n=m, A=t v A=1,v"
and A, (2)=v7T,(z), A;;=0,i=2,3,. From Eq (12) weget
the me result glven by fiq (43). From Eqs (13) and (14) we
have

F(s)=-1/[1+7,@)s] . (49)

Using a similar procedure as in the cases of the TCS and DU
models we obtain

f(zu) = y'l{Fl(s)} = -1,@ exp[-u/t,2)], (50)

Inthiscaseitisnot possibleto givethe analytical form
of the lightning current along the channel asit is done in the
cases of the TCS and the DU model. This can be easily
understood because the shape of the function t (z) isnot given
beforehand. Hence the expression of the current along the
channel will be

i) - f B0 e % fet-E v+ 20c) E
LF g€®) |, dgE)
T,0vE)  dE D
v exp| - 128 | o
T,(v*E)
f€)-— (-t . E-Eh

rl+£

In order to calculate the current aong the channel,
Thottappillil and Uman [4] divided the activated length of the
channel in N sections, assuming the constant value for <, i
each of them. The final shape of the function < (z) was result
of the best matching of the cal culated with the measured LEMP.
It meansthat theintegral given by Eq.(51) can be approximately
solved in the same manner, by dividing it into N addends. This
gives the idea for further calculations using the GTCS if the
current integral, Eq.(5) could not be analytically solved.
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